Chapter 1

Introduction

Every computer science curriculum in the world includes a course on data
structures and algorithms. Data structures are that important; they im-
prove our quality of life and even save lives on a regular basis. Many
multi-million and several multi-billion dollar companies have been built
around data structures.

How can this be? If we stop to think about it, we realize that we inter-
act with data structures constantly.

* Open a file: File system data structures are used to locate the parts
of that file on disk so they can be retrieved. This isn’t easy; disks
contain hundreds of millions of blocks. The contents of your file
could be stored on any one of them.

* Look up a contact on your phone: A data structure is used to look
up a phone number in your contact list based on partial information
even before you finish dialing/typing. This isn’t easy; your phone
may contain information about a lot of people—everyone you have
ever contacted via phone or email—and your phone doesn’t have a
very fast processor or a lot of memory.

* Log in to your favourite social network: The network servers use
your login information to look up your account information. This
isn’t easy; the most popular social networks have hundreds of mil-
lions of active users.

* Do a web search: The search engine uses data structures to find the
web pages containing your search terms. This isn’t easy; there are

§1.1 Introduction

over 8.5 billion web pages on the Internet and each page contains a
lot of potential search terms.

* Phone emergency services (9-1-1): The emergency services network
looks up your phone number in a data structure that maps phone
numbers to addresses so that police cars, ambulances, or fire trucks
can be sent there without delay. This is important; the person mak-
ing the call may not be able to provide the exact address they are
calling from and a delay can mean the difference between life or
death.

1.1 The Need for Efficiency

In the next section, we look at the operations supported by the most com-
monly used data structures. Anyone with a bit of programming experi-
ence will see that these operations are not hard to implement correctly.
We can store the data in an array or a linked list and each operation can
be implemented by iterating over all the elements of the array or list and
possibly adding or removing an element.

This kind of implementation is easy, but not very efficient. Does this
really matter? Computers are becoming faster and faster. Maybe the ob-
vious implementation is good enough. Let’s do some rough calculations
to find out.

Number of operations: Imagine an application with a moderately-sized
data set, say of one million (10°), items. It is reasonable, in most appli-
cations, to assume that the application will want to look up each item
at least once. This means we can expect to do at least one million (10°)
searches in this data. If each of these 10° searches inspects each of the
10% items, this gives a total of 10° x 10° = 10!? (one thousand billion)
inspections.

Processor speeds: At the time of writing, even a very fast desktop com-
puter can not do more than one billion (10°) operations per second.! This

IComputer speeds are at most a few gigahertz (billions of cycles per second), and each
operation typically takes a few cycles.

The Need for Efficiency §1.1

means that this application will take at least 10'2/10° = 1000 seconds, or
roughly 16 minutes and 40 seconds. Sixteen minutes is an eon in com-
puter time, but a person might be willing to put up with it (if he or she
were headed out for a coffee break).

Bigger data sets: Now consider a company like Google, that indexes
over 8.5 billion web pages. By our calculations, doing any kind of query
over this data would take at least 8.5 seconds. We already know that this
isn’t the case; web searches complete in much less than 8.5 seconds, and
they do much more complicated queries than just asking if a particular
page is in their list of indexed pages. At the time of writing, Google re-
ceives approximately 4,500 queries per second, meaning that they would
require at least 4,500 x 8.5 = 38, 250 very fast servers just to keep up.

The solution: These examples tell us that the obvious implementations
of data structures do not scale well when the number of items, n, in the
data structure and the number of operations, m, performed on the data
structure are both large. In these cases, the time (measured in, say, ma-
chine instructions) is roughly n x m.

The solution, of course, is to carefully organize data within the data
structure so that not every operation requires every data item to be in-
spected. Although it sounds impossible at first, we will see data struc-
tures where a search requires looking at only two items on average, in-
dependent of the number of items stored in the data structure. In our
billion instruction per second computer it takes only 0.000000002 sec-
onds to search in a data structure containing a billion items (or a trillion,
or a quadrillion, or even a quintillion items).

We will also see implementations of data structures that keep the
items in sorted order, where the number of items inspected during an
operation grows very slowly as a function of the number of items in the
data structure. For example, we can maintain a sorted set of one billion
items while inspecting at most 60 items during any operation. In our bil-
lion instruction per second computer, these operations take 0.00000006
seconds each.

The remainder of this chapter briefly reviews some of the main con-
cepts used throughout the rest of the book. Section 1.2 describes the in-

§1.2 Introduction

terfaces implemented by all of the data structures described in this book
and should be considered required reading. The remaining sections dis-
cuss:

* some mathematical review including exponentials, logarithms, fac-
torials, asymptotic (big-Oh) notation, probability, and randomiza-
tion;

* the model of computation;
* correctness, running time, and space;
* an overview of the rest of the chapters; and

* the sample code and typesetting conventions.

A reader with or without a background in these areas can easily skip them
now and come back to them later if necessary.

1.2 Interfaces

When discussing data structures, it is important to understand the dif-
ference between a data structure’s interface and its implementation. An
interface describes what a data structure does, while an implementation
describes how the data structure does it.

An interface, sometimes also called an abstract data type, defines the
set of operations supported by a data structure and the semantics, or
meaning, of those operations. An interface tells us nothing about how
the data structure implements these operations; it only provides a list of
supported operations along with specifications about what types of argu-
ments each operation accepts and the value returned by each operation.

A data structure implementation, on the other hand, includes the inter-
nal representation of the data structure as well as the definitions of the
algorithms that implement the operations supported by the data struc-
ture. Thus, there can be many implementations of a single interface. For
example, in Chapter 2, we will see implementations of the List interface
using arrays and in Chapter 3 we will see implementations of the List
interface using pointer-based data structures. Each implements the same
interface, List, but in different ways.

Interfaces §1.2

] O Ogd -~

add(x)/enqueue(x) remove()/dequeue()

Figure 1.1: A FIFO Queue.

1.2.1 The Queue, Stack, and Deque Interfaces

The Queue interface represents a collection of elements to which we can
add elements and remove the next element. More precisely, the opera-
tions supported by the Queue interface are

e add(x): add the value x to the Queue

* remove(): remove the next (previously added) value, y, from the
Queue and return y

Notice that the remove() operation takes no argument. The Queue’s queue-
ing discipline decides which element should be removed. There are many
possible queueing disciplines, the most common of which include FIFO,
priority, and LIFO.

A FIFO (first-in-first-out) Queue, which is illustrated in Figure 1.1, re-
moves items in the same order they were added, much in the same way
a queue (or line-up) works when checking out at a cash register in a gro-
cery store. This is the most common kind of Queue so the qualifier FIFO
is often omitted. In other texts, the add(x) and remove() operations on a
FIFO Queue are often called enqueue(x) and dequeue(), respectively.

A priority Queue, illustrated in Figure 1.2, always removes the small-
est element from the Queue, breaking ties arbitrarily. This is similar to the
way in which patients are triaged in a hospital emergency room. As pa-
tients arrive they are evaluated and then placed in a waiting room. When
a doctor becomes available he or she first treats the patient with the most
life-threatening condition. The remove(x) operation on a priority Queue
is usually called deleteMin() in other texts.

A very common queueing discipline is the LIFO (last-in-first-out) dis-
cipline, illustrated in Figure 1.3. In a LIFO Queue, the most recently
added element is the next one removed. This is best visualized in terms
of a stack of plates; plates are placed on the top of the stack and also

§1.2 Introduction

Figure 1.2: A priority Queue.

remove()/deleteMin()

add(x)/push(x)

I I T e

remove()/ pop()

Figure 1.3: A stack.

removed from the top of the stack. This structure is so common that it
gets its own name: Stack. Often, when discussing a Stack, the names
of add(x) and remove() are changed to push(x) and pop(); this is to avoid
confusing the LIFO and FIFO queueing disciplines.

A Deque is a generalization of both the FIFO Queue and LIFO Queue
(Stack). A Deque represents a sequence of elements, with a front and a
back. Elements can be added at the front of the sequence or the back of
the sequence. The names of the Deque operations are self-explanatory:
addFirst(x), removeFirst(), addLast(x), and removelLast(). It is worth
noting that a Stack can be implemented using only addFirst(x) and
removef irst() while a FIFO Queue can be implemented using addLast(x)
and removeFirst().

1.2.2 Thelist Interface: Linear Sequences

This book will talk very little about the FIFO Queue, Stack, or Deque in-
terfaces. This is because these interfaces are subsumed by the List inter-
face. A List, illustrated in Figure 1.4, represents a sequence, Xg,...,Xn_1,

Interfaces §1.2

n

0 1 I I O I 2 VO D D R K

Figure 1.4: A List represents a sequence indexed by 0,1,2,...,n. In this List a

call to get(2) would return the value c.

of values. The List interface includes the following operations:

1. size(): return n, the length of the list

2. get(i): return the value x;

3. set(i,x): set the value of x; equal to x

4. add(i,x): add x at position i, displacing x;,...,X,_1;

Set xj,1 =xj, forall je{n-1,...

,1i}, increment n, and set x; = x

5. remove(i) remove the value x;, displacing x;1,...,%,_1;

Set xj = xj;1, forall j € {i,...,n—2} and decrement n

Notice that these operations are easily sufficient to implement the Deque

interface:

addFirst(x) =
removeFirst() =
addLast(x) =
=

removelast()

add(0, x)
remove(0)
add(size(),x)

remove(size()—1)

Although we will normally not discuss the Stack, Deque and FIFO

Queue interfaces in subsequent chapters, the terms Stack and Deque are

sometimes used in the names of data structures that implement the List

interface. When this happens, it highlights the fact that these data struc-

tures can be used to implement the Stack or Deque interface very effi-

ciently. For example, the ArrayDeque class is an implementation of the

List interface that implements all the Deque operations in constant time

per operation.

§1.2 Introduction

1.2.3 The USet Interface: Unordered Sets

The USet interface represents an unordered set of unique elements, which
mimics a mathematical set. A USet contains n distinct elements; no ele-
ment appears more than once; the elements are in no specific order. A
USet supports the following operations:

1. size(): return the number, n, of elements in the set

2. add(x): add the element x to the set if not already present;
Add x to the set provided that there is no element y in the set such
that x equals y. Return true if x was added to the set and false
otherwise.

3. remove(x): remove x from the set;
Find an element y in the set such that x equals y and remove y.
Return y, or null if no such element exists.

4. find(x): find x in the set if it exists;
Find an element y in the set such that y equals x. Return y, or null
if no such element exists.

These definitions are a bit fussy about distinguishing x, the element
we are removing or finding, from y, the element we may remove or find.
This is because x and y might actually be distinct objects that are never-
theless treated as equal.? Such a distinction is useful because it allows for
the creation of dictionaries or maps that map keys onto values.

To create a dictionary/map, one forms compound objects called Pairs,
each of which contains a key and a value. Two Pairs are treated as equal
if their keys are equal. If we store some pair (k,v) in a USet and then
later call the find(x) method using the pair x = (k,nul1l) the result will be
y = (k,v). In other words, it is possible to recover the value, v, given only
the key, k.

2In Java, this is done by overriding the class’s equals(y) and hashCode() methods.

Mathematical Background §1.3

1.2.4 The SSet Interface: Sorted Sets

The SSet interface represents a sorted set of elements. An SSet stores
elements from some total order, so that any two elements x and y can
be compared. In code examples, this will be done with a method called
compare(x,y) in which

<0 ifx<y
compare(x,y)3 >0 ifx>y
=0 ifx=y

An SSet supports the size(), add(x), and remove(x) methods with exactly
the same semantics as in the USet interface. The difference between a
USet and an SSet is in the find(x) method:

4. find(x): locate x in the sorted set;
Find the smallest element y in the set such that y > x. Return y or
null if no such element exists.

This version of the find(x) operation is sometimes referred to as a
successor search. It differs in a fundamental way from USet.find(x) since
it returns a meaningful result even when there is no element equal to x
in the set.

The distinction between the USet and SSet find(x) operations is very
important and often missed. The extra functionality provided by an SSet
usually comes with a price that includes both a larger running time and a
higher implementation complexity. For example, most of the SSet imple-
mentations discussed in this book all have find(x) operations with run-
ning times that are logarithmic in the size of the set. On the other hand,
the implementation of a USet as a ChainedHashTable in Chapter 5 has
a find(x) operation that runs in constant expected time. When choosing
which of these structures to use, one should always use a USet unless the
extra functionality offered by an SSet is truly needed.

1.3 Mathematical Background

In this section, we review some mathematical notations and tools used
throughout this book, including logarithms, big-Oh notation, and proba-

§1.3 Introduction

bility theory. This review will be brief and is not intended as an introduc-
tion. Readers who feel they are missing this background are encouraged
to read, and do exercises from, the appropriate sections of the very good
(and free) textbook on mathematics for computer science [50].

1.3.1 Exponentials and Logarithms

The expression b* denotes the number b raised to the power of x. If x is
a positive integer, then this is just the value of b multiplied by itself x -1
times:

b*=bxbx---xb .

NSRS
X

When x is a negative integer, b* = 1/b™*. When x = 0, b* = 1. When b is not
an integer, we can still define exponentiation in terms of the exponential
function e* (see below), which is itself defined in terms of the exponential
series, but this is best left to a calculus text.

In this book, the expression log, k denotes the base-b logarithm of k.
That is, the unique value x that satisfies

b =k .

Most of the logarithms in this book are base 2 (binary logarithms). For
these, we omit the base, so that logk is shorthand for log, k.

An informal, but useful, way to think about logarithms is to think of
log, k as the number of times we have to divide k by b before the result
is less than or equal to 1. For example, when one does binary search,
each comparison reduces the number of possible answers by a factor of 2.
This is repeated until there is at most one possible answer. Therefore, the
number of comparison done by binary search when there are initially at
most 7+ 1 possible answers is at most [log,(n +1)].

Another logarithm that comes up several times in this book is the nat-
ural logarithm. Here we use the notation Ink to denote log, k, where e —
Euler’s constant — is given by

n—-o0

1 n
e=lim (1+—) ~2.71828 .
n

10

Mathematical Background §1.3

The natural logarithm comes up frequently because it is the value of a
particularly common integral:

k
j 1/xdx =1Ink .
1

Two of the most common manipulations we do with logarithms are re-
moving them from an exponent:

blOgbk -k
and changing the base of a logarithm:

log, k
log, b °

log, k =

For example, we can use these two manipulations to compare the natural
and binary logarithms
logk logk

1 = = =(In2)(1 ~ 0. 1 1 .
nk loge (Ine)/(In2) (In2)(logk) ~ 0.693147logk

1.3.2 Factorials

In one or two places in this book, the factorial function is used. For a non-
negative integer #, the notation n! (pronounced “n factorial”) is defined
to mean

Factorials appear because n! counts the number of distinct permutations,
i.e., orderings, of n distinct elements. For the special case n = 0, 0! is
defined as 1.

The quantity n! can be approximated using Stirling’s Approximation:

n! = V2rm(£)n e
e

where
1 1

< <— .
a1 S 1
Stirling’s Approximation also approximates In(n!):

1
In(n!)=nlnn-n+ 5 In(27tn) + a(n)

11

§1.3 Introduction

(In fact, Stirling’s Approximation is most easily proven by approximating

In(n!) =In1+1In2+---+1nn by the integral Lnlnndn =nlnn-n+1.)
Related to the factorial function are the binomial coefficients. For a

non-negative integer n and an integer k € {0,...,n}, the notation (}) de-

AN n!
(k)_ kl(n—k)! ~

The binomial coefficient (;) (pronounced “n choose k”) counts the num-

notes:

ber of subsets of an n element set that have size k, i.e., the number of ways
of choosing k distinct integers from the set {1,...,n}.

1.3.3 Asymptotic Notation

When analyzing data structures in this book, we want to talk about the
running times of various operations. The exact running times will, of
course, vary from computer to computer and even from run to run on an
individual computer. When we talk about the running time of an opera-
tion we are referring to the number of computer instructions performed
during the operation. Even for simple code, this quantity can be diffi-
cult to compute exactly. Therefore, instead of analyzing running times
exactly, we will use the so-called big-Oh notation: For a function f(n),
O(f (n)) denotes a set of functions,

_ | g(n):there exists ¢ > 0, and 1 such that
Olf (m) = { g(n)<c-f(n)foralln>mng ‘

Thinking graphically, this set consists of the functions g(n) where c- f(n)
starts to dominate g(n) when n is sufficiently large.

We generally use asymptotic notation to simplify functions. For exam-
ple, in place of 5nlogn + 8n—200 we can write O(nlogn). This is proven
as follows:

5nlogn+8n—200 < 5nlogn+8n

<5nlogn+8nlogn for n>2 (sothatlogn>1)

<13nlogn .

This demonstrates that the function f(n) = 5nlogn + 8n—200 is in the set
O(nlogn) using the constants ¢ =13 and ng = 2.

12

Mathematical Background §1.3

A number of useful shortcuts can be applied when using asymptotic
notation. First:
O(n‘1) c O(n?) ,

for any c¢; < ¢,. Second: For any constants a,b,c > 0,
O(a) c O(logn) c O(n®) c O(c") .

These inclusion relations can be multiplied by any positive value, and
they still hold. For example, multiplying by n yields:

O(n) c O(nlogn) c O(n'*?) c O(nc") .

Continuing in a long and distinguished tradition, we will abuse this
notation by writing things like f; (1) = O(f(n)) when what we really mean
is fi(n) € O(f(n)). We will also make statements like “the running time
of this operation is O(f(n))” when this statement should be “the running
time of this operation is a member of O(f(n)).” These shortcuts are mainly
to avoid awkward language and to make it easier to use asymptotic nota-
tion within strings of equations.

A particularly strange example of this occurs when we write state-
ments like

T(n)=2logn+O(1) .

Again, this would be more correctly written as
T(n) < 2logn + [some member of O(1)] .

The expression O(1) also brings up another issue. Since there is no
variable in this expression, it may not be clear which variable is getting
arbitrarily large. Without context, there is no way to tell. In the example
above, since the only variable in the rest of the equation is n, we can
assume that this should be read as T(n) = 2logn+O(f (n)), where f(n) = 1.

Big-Oh notation is not new or unique to computer science. It was used
by the number theorist Paul Bachmann as early as 1894, and is immensely
useful for describing the running times of computer algorithms. Consider
the following piece of code:

13

§1.3 Introduction

Simple

void snippet() {
for (int i = 0; i < n; i++)
al[i] = i;

One execution of this method involves
* 1 assignment (inti = 0),
* n+1 comparisons (i <n),
* nincrements (i ++),
* n array offset calculations (a[i]), and
* nindirect assignments (a[i] = i).
So we could write this running time as
T(n)=a+b(n+1)+cn+dn+en ,

where a, b, ¢, d, and e are constants that depend on the machine running
the code and represent the time to perform assignments, comparisons,
increment operations, array offset calculations, and indirect assignments,
respectively. However, if this expression represents the running time of
two lines of code, then clearly this kind of analysis will not be tractable
to complicated code or algorithms. Using big-Oh notation, the running
time can be simplified to
T(n)=0(n) .

Not only is this more compact, but it also gives nearly as much informa-
tion. The fact that the running time depends on the constants 4, b, ¢, d,
and e in the above example means that, in general, it will not be possible
to compare two running times to know which is faster without knowing
the values of these constants. Even if we make the effort to determine
these constants (say, through timing tests), then our conclusion will only
be valid for the machine we run our tests on.

Big-Oh notation allows us to reason at a much higher level, making it
possible to analyze more complicated functions. If two algorithms have

14

Mathematical Background §1.3

the same big-Oh running time, then we won’t know which is faster, and
there may not be a clear winner. One may be faster on one machine,
and the other may be faster on a different machine. However, if the two
algorithms have demonstrably different big-Oh running times, then we
can be certain that the one with the smaller running time will be faster
for large enough values of n.

An example of how big-Oh notation allows us to compare two differ-
ent functions is shown in Figure 1.5, which compares the rate of grown
of fi(n) = 15n versus f,(n) = 2nlogn. It might be that f;(n) is the run-
ning time of a complicated linear time algorithm while f,(n) is the run-
ning time of a considerably simpler algorithm based on the divide-and-
conquer paradigm. This illustrates that, although fi(n) is greater than
fo(n) for small values of n, the opposite is true for large values of n. Even-
tually fi(n) wins out, by an increasingly wide margin. Analysis using
big-Oh notation told us that this would happen, since O(n) € O(nlogn).

In a few cases, we will use asymptotic notation on functions with more
than one variable. There seems to be no standard for this, but for our
purposes, the following definition is sufficient:

g(ny,...,ny) : there exists ¢ > 0, and z such that

O(f(ny,...,nx)) = g(ny,...,ng) <c- f(ny,...,ng)
for all ny,...,ny such that g(ny,...,n;) >z

This definition captures the situation we really care about: when the ar-
guments ny,...,1n, make ¢ take on large values. This definition also agrees
with the univariate definition of O(f(n)) when f(n) is an increasing func-
tion of n. The reader should be warned that, although this works for our
purposes, other texts may treat multivariate functions and asymptotic
notation differently.

1.3.4 Randomization and Probability

Some of the data structures presented in this book are randomized; they
make random choices that are independent of the data being stored in
them or the operations being performed on them. For this reason, per-
forming the same set of operations more than once using these structures
could result in different running times. When analyzing these data struc-

15

§1.3 Introduction

1600

1400
1200
1000

£ 800
600

400

200

300000

250000 - -7

200000 - R -

n

= 150000 .
S~
100000 | -

50000 e -
-2 15n ——

= 2nlogn -----

0 \ \ \ \ \ \ |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n

Figure 1.5: Plots of 15n versus 2nlogn.

16

Mathematical Background §1.3

tures we are interested in their average or expected running times.
Formally, the running time of an operation on a randomized data
structure is a random variable, and we want to study its expected value.
For a discrete random variable X taking on values in some countable uni-
verse U, the expected value of X, denoted by E[X], is given by the formula

E[X]=) x-Pr(X=x).
xeU

Here Pr{€} denotes the probability that the event £ occurs. In all of the
examples in this book, these probabilities are only with respect to the ran-
dom choices made by the randomized data structure; there is no assump-
tion that the data stored in the structure, nor the sequence of operations
performed on the data structure, is random.

One of the most important properties of expected values is linearity of
expectation. For any two random variables X and Y,

E[X + Y] =E[X]+E[Y] .

More generally, for any random variables Xy, ..., X,

k
3%
i=1

Linearity of expectation allows us to break down complicated random

k

= ZE[Xi] .

i=1

E

variables (like the left hand sides of the above equations) into sums of
simpler random variables (the right hand sides).

A useful trick, that we will use repeatedly, is defining indicator ran-
dom variables. These binary variables are useful when we want to count
something and are best illustrated by an example. Suppose we toss a fair
coin k times and we want to know the expected number of times the coin
turns up as heads. Intuitively, we know the answer is k/2, but if we try to
prove it using the definition of expected value, we get

§1.4 Introduction

This requires that we know enough to calculate that Pr{X =i} = (];)/Zk,

and that we know the binomial identities 1(’1() = k(kzl) and Z?:o (]f) =2k,
Using indicator variables and linearity of expectation makes things

much easier. For each i € {1,...,k}, define the indicator random variable

i =

1 if the ith coin toss is heads
0 otherwise.

Then
E[;]=(1/2)1+(1/2)0=1/2 .

Now, X = Zle I;, so

This is a bit more long-winded, but doesn’t require that we know any
magical identities or compute any non-trivial probabilities. Even better,
it agrees with the intuition that we expect half the coins to turn up as
heads precisely because each individual coin turns up as heads with a
probability of 1/2.

1.4 The Model of Computation
In this book, we will analyze the theoretical running times of operations

on the data structures we study. To do this precisely, we need a mathemat-
ical model of computation. For this, we use the w-bit word-RAM model.

18

Correctness, Time Complexity, and Space Complexity §1.5

RAM stands for Random Access Machine. In this model, we have access
to a random access memory consisting of cells, each of which stores a w-
bit word. This implies that a memory cell can represent, for example, any
integer in the set {0,...,2" - 1}.

In the word-RAM model, basic operations on words take constant
time. This includes arithmetic operations (+, —, *, /, %), comparisons
(<, >, =, <, 2), and bitwise boolean operations (bitwise-AND, OR, and
exclusive-OR).

Any cell can be read or written in constant time. A computer’s mem-
ory is managed by a memory management system from which we can
allocate or deallocate a block of memory of any size we would like. Allo-
cating a block of memory of size k takes O(k) time and returns a reference
(a pointer) to the newly-allocated memory block. This reference is small
enough to be represented by a single word.

The word-size w is a very important parameter of this model. The only
assumption we will make about w is the lower-bound w > logn, where n
is the number of elements stored in any of our data structures. This is a
fairly modest assumption, since otherwise a word is not even big enough
to count the number of elements stored in the data structure.

Space is measured in words, so that when we talk about the amount of
space used by a data structure, we are referring to the number of words of
memory used by the structure. All of our data structures store values of
a generic type T, and we assume an element of type T occupies one word
of memory. (In reality, we are storing references to objects of type T, and
these references occupy only one word of memory.)

The w-bit word-RAM model is a fairly close match for the (32-bit) Java
Virtual Machine (JVM) when w = 32. The data structures presented in
this book don’t use any special tricks that are not implementable on the
JVM and most other architectures.

1.5 Correctness, Time Complexity, and Space Complexity

When studying the performance of a data structure, there are three things
that matter most:

19

§1.5 Introduction

Correctness: The data structure should correctly implement its inter-
face.

Time complexity: The running times of operations on the data structure
should be as small as possible.

Space complexity: The data structure should use as little memory as
possible.

In this introductory text, we will take correctness as a given; we won'’t
consider data structures that give incorrect answers to queries or don’t
perform updates properly. We will, however, see data structures that
make an extra effort to keep space usage to a minimum. This won't usu-
ally affect the (asymptotic) running times of operations, but can make the
data structures a little slower in practice.

When studying running times in the context of data structures we
tend to come across three different kinds of running time guarantees:

Worst-case running times: These are the strongest kind of running time
guarantees. If a data structure operation has a worst-case running
time of f(n), then one of these operations never takes longer than
f(n) time.

Amortized running times: If we say that the amortized running time of
an operation in a data structure is f(n), then this means that the
cost of a typical operation is at most f(n). More precisely, if a data
structure has an amortized running time of f(n), then a sequence
of m operations takes at most mf(n) time. Some individual opera-
tions may take more than f(n) time but the average, over the entire
sequence of operations, is at most f(n).

Expected running times: If we say that the expected running time of an
operation on a data structure is f(n), this means that the actual run-
ning time is a random variable (see Section 1.3.4) and the expected
value of this random variable is at most f(n). The randomization
here is with respect to random choices made by the data structure.

To understand the difference between worst-case, amortized, and ex-
pected running times, it helps to consider a financial example. Consider
the cost of buying a house:

20

Correctness, Time Complexity, and Space Complexity §1.5

Worst-case versus amortized cost: Suppose that a home costs $120 000.
In order to buy this home, we might get a 120 month (10 year) mortgage
with monthly payments of $1 200 per month. In this case, the worst-case
monthly cost of paying this mortgage is $1 200 per month.

If we have enough cash on hand, we might choose to buy the house
outright, with one payment of $120 000. In this case, over a period of 10
years, the amortized monthly cost of buying this house is

$120000/120 months = $1 000 per month .

This is much less than the $1 200 per month we would have to pay if we
took out a mortgage.

Worst-case versus expected cost: Next, consider the issue of fire insur-
ance on our $120 000 home. By studying hundreds of thousands of cases,
insurance companies have determined that the expected amount of fire
damage caused to a home like ours is $10 per month. This is a very small
number, since most homes never have fires, a few homes may have some
small fires that cause a bit of smoke damage, and a tiny number of homes
burn right to their foundations. Based on this information, the insurance
company charges $15 per month for fire insurance.

Now it’s decision time. Should we pay the $15 worst-case monthly cost
for fire insurance, or should we gamble and self-insure at an expected cost
of $10 per month? Clearly, the $10 per month costs less in expectation,
but we have to be able to accept the possibility that the actual cost may be
much higher. In the unlikely event that the entire house burns down, the
actual cost will be $120 000.

These financial examples also offer insight into why we sometimes set-
tle for an amortized or expected running time over a worst-case running
time. It is often possible to get a lower expected or amortized running
time than a worst-case running time. At the very least, it is very often
possible to get a much simpler data structure if one is willing to settle for
amortized or expected running times.

21

§1.6 Introduction

1.6 Code Samples

The code samples in this book are written in the Java programming lan-
guage. However, to make the book accessible to readers not familiar with
all of Java’s constructs and keywords, the code samples have been sim-
plified. For example, a reader won’t find any of the keywords public,
protected, private, or static. A reader also won’t find much discus-
sion about class hierarchies. Which interfaces a particular class imple-
ments or which class it extends, if relevant to the discussion, should be
clear from the accompanying text.

These conventions should make the code samples understandable by
anyone with a background in any of the languages from the ALGOL tradi-
tion, including B, C, C++, C#, Objective-C, D, Java, JavaScript, and so on.
Readers who want the full details of all implementations are encouraged
to look at the Java source code that accompanies this book.

This book mixes mathematical analyses of running times with Java
source code for the algorithms being analyzed. This means that some
equations contain variables also found in the source code. These vari-
ables are typeset consistently, both within the source code and within
equations. The most common such variable is the variable n that, without
exception, always refers to the number of items currently stored in the
data structure.

1.7 List of Data Structures

Tables 1.1 and 1.2 summarize the performance of data structures in this
book that implement each of the interfaces, List, USet, and SSet, de-
scribed in Section 1.2. Figure 1.6 shows the dependencies between vari-
ous chapters in this book. A dashed arrow indicates only a weak depen-
dency, in which only a small part of the chapter depends on a previous
chapter or only the main results of the previous chapter.

22

List of Data Structures §1.7
List implementations
get(i)/set(i,x) add(i, x)/remove(i)
ArrayStack 0O(1) O(l+n—i)A §2.1
ArrayDeque O(1) O(1 +min{i,n—i})* | §2.4
DualArrayDeque 0O(1) O(1 +min{i,n—i})* | §2.5
RootishArrayStack | O(1) O(1+n-i)A §2.6
DLList O(1 + min{i,n—i}) O(1 + min{i,n—i}) §3.2
SEList O(1 +min{i,n—1i}/b) | O(b+min{i,n—i}/b)" §3.3
SkiplistList O(logn)E O(logn)E §4.3
USet implementations
find(x) add(x)/remove(x)
ChainedHashTable | O(1)F O(1)AF §5.1
LinearHashTable O(1)E O(1)ME §5.2

A Denotes an amortized running time.
E Denotes an expected running time.

Table 1.1: Summary of List and USet implementations.

23

§1.7 Introduction

SSet implementations

find(x) add(x)/remove(x)
SkiplistSSet O(logn)E O(log n)E §4.2
Treap O(logn)E | O(logn)f §7.2
ScapegoatTree | O(logn) O(logn)A §8.1
RedBlackTree | O(logn) O(logn) §9.2
BinaryTrie! O(w) O(w) §13.1
XFastTriel O(logw)™E | O(w)AE §13.2
YFastTrie! O(logw)*E| O(logw)AE §13.3
BTree O(logn) O(B +logn)* §14.2
BTreeX O(loggn) | O(loggzn) §14.2

(Priority) Queue implementations

findMin() | add(x)/remove()
BinaryHeap O(1) O(logn)? §10.1
MeldableHeap | O(1) O(logn)E §10.2

I This structure can only store w-bit integer data.
X This denotes the running time in the external-memory
model; see Chapter 14.

Table 1.2: Summary of SSet and priority Queue implementations.

24

List of Data Structures §1.7

1. Introduction

3. Linked lists
3.3 Space-efficient linked lists

2. Array-based lists

5. Hash tables

4. Skiplists

6. Binary trees

7. Random binary search trees }—\. 11. Sorting algorithms
11.1.2. Quicksort

11.1.3. Heapsort

8. Scapegoat trees

9. Red-black trees

i[13. Data structures for integers I

14. External-memory searching I

Figure 1.6: The dependencies between chapters in this book.

25

§1.8 Introduction

1.8 Discussion and Exercises

The List, USet, and SSet interfaces described in Section 1.2 are influ-
enced by the Java Collections Framework [54]. These are essentially sim-
plified versions of the List, Set, Map, SortedSet, and SortedMap inter-
faces found in the Java Collections Framework. The accompanying source
code includes wrapper classes for making USet and SSet implementa-
tions into Set, Map, SortedSet, and SortedMap implementations.

For a superb (and free) treatment of the mathematics discussed in this
chapter, including asymptotic notation, logarithms, factorials, Stirling’s
approximation, basic probability, and lots more, see the textbook by Ley-
man, Leighton, and Meyer [50]. For a gentle calculus text that includes
formal definitions of exponentials and logarithms, see the (freely avail-
able) classic text by Thompson [73].

For more information on basic probability, especially as it relates to
computer science, see the textbook by Ross [65]. Another good reference,
which covers both asymptotic notation and probability, is the textbook by
Graham, Knuth, and Patashnik [37].

Readers wanting to brush up on their Java programming can find
many Java tutorials online [56].

Exercise 1.1. This exercise is designed to help familiarize the reader with
choosing the right data structure for the right problem. If implemented,
the parts of this exercise should be done by making use of an implemen-
tation of the relevant interface (Stack, Queue, Deque, USet, or SSet) pro-
vided by the Java Collections Framework.

Solve the following problems by reading a text file one line at a time
and performing operations on each line in the appropriate data struc-
ture(s). Your implementations should be fast enough that even files con-
taining a million lines can be processed in a few seconds.

1. Read the input one line at a time and then write the lines out in
reverse order, so that the last input line is printed first, then the
second last input line, and so on.

2. Read the first 50 lines of input and then write them out in reverse
order. Read the next 50 lines and then write them out in reverse

26

Discussion and Exercises §1.8

order. Do this until there are no more lines left to read, at which
point any remaining lines should be output in reverse order.

In other words, your output will start with the 50th line, then the
49th, then the 48th, and so on down to the first line. This will be
followed by the 100th line, followed by the 99th, and so on down to
the 51st line. And so on.

Your code should never have to store more than 50 lines at any given
time.

. Read the input one line at a time. At any point after reading the
first 42 lines, if some line is blank (i.e., a string of length 0), then
output the line that occured 42 lines prior to that one. For example,
if Line 242 is blank, then your program should output line 200.
This program should be implemented so that it never stores more
than 43 lines of the input at any given time.

. Read the input one line at a time and write each line to the output
if it is not a duplicate of some previous input line. Take special care
so that a file with a lot of duplicate lines does not use more memory
than what is required for the number of unique lines.

. Read the input one line at a time and write each line to the output
only if you have already read this line before. (The end result is that
you remove the first occurrence of each line.) Take special care so
that a file with a lot of duplicate lines does not use more memory
than what is required for the number of unique lines.

. Read the entire input one line at a time. Then output all lines sorted
by length, with the shortest lines first. In the case where two lines
have the same length, resolve their order using the usual “sorted
order.” Duplicate lines should be printed only once.

. Do the same as the previous question except that duplicate lines
should be printed the same number of times that they appear in the
input.

. Read the entire input one line at a time and then output the even
numbered lines (starting with the first line, line 0) followed by the
odd-numbered lines.

27

§1.8 Introduction

9. Read the entire input one line at a time and randomly permute the
lines before outputting them. To be clear: You should not modify
the contents of any line. Instead, the same collection of lines should
be printed, but in a random order.

Exercise 1.2. A Dyck word is a sequence of +1’s and -1’s with the property
that the sum of any prefix of the sequence is never negative. For example,
+1,-1,+1,-1 is a Dyck word, but +1,-1,-1,+1 is not a Dyck word since
the prefix +1 —1 -1 < 0. Describe any relationship between Dyck words
and Stack push(x) and pop() operations.

Exercise 1.3. A matched string is a sequence of {, }, (,), [, and] characters
that are properly matched. For example, “{{()[]}}” is a matched string, but
this “{{()]}” is not, since the second { is matched with a |. Show how to
use a stack so that, given a string of length n, you can determine if it is a
matched string in O(n) time.

Exercise 1.4. Suppose you have a Stack, s, that supports only the push(x)
and pop() operations. Show how, using only a FIFO Queue, g, you can
reverse the order of all elements in s.

Exercise 1.5. Using a USet, implement a Bag. A Bagis like a USe t—it sup-
ports the add(x), remove(x) and find(x) methods—but it allows duplicate
elements to be stored. The find(x) operation in a Bag returns some ele-
ment (if any) that is equal to x. In addition, a Bag supports the findA11(x)
operation that returns a list of all elements in the Bag that are equal to x.

Exercise 1.6. From scratch, write and test implementations of the List,
USet and SSet interfaces. These do not have to be efficient. They can
be used later to test the correctness and performance of more efficient
implementations. (The easiest way to do this is to store the elements in
an array.)

Exercise 1.7. Work to improve the performance of your implementations
from the previous question using any tricks you can think of. Experiment
and think about how you could improve the performance of add(i, x) and
remove(i) in your List implementation. Think about how you could im-
prove the performance of the find(x) operation in your USet and SSet
implementations. This exercise is designed to give you a feel for how
difficult it can be to obtain efficient implementations of these interfaces.

28

